
Machine Learning and Data Mining

Introduction

Kalev Kask

273P Spring 2018

+

Artificial Intelligence (AI)
• Building “intelligent systems”

• Lots of parts to intelligent behavior

RoboCup

Darpa GC (Stanley)

Chess (Deep Blue v. Kasparov)
(c) Alexander Ihler

Machine learning (ML)
• One (important) part of AI

• Making predictions (or decisions)

• Getting better with experience (data)

• Problems whose solutions are “hard to describe”

(c) Alexander Ihler

Areas of ML
• Supervised learning

• Unsupervised learning

• Reinforcement learning

Types of prediction problems
• Supervised learning

– “Labeled” training data

– Every example has a desired target value (a “best answer”)

– Reward prediction being close to target

– Classification: a discrete-valued prediction (often: decision)

– Regression: a continuous-valued prediction

(c) Alexander Ihler

Types of prediction problems
• Supervised learning

• Unsupervised learning

– No known target values

– No targets = nothing to predict?

– Reward “patterns” or “explaining features”

– Often, data mining

“Chick

flicks”?

serious

escapist

The

Princess

Diaries

The Lion

King

Braveheart

Lethal

Weapon

Independence

Day

Amadeu

s

The

Color

Purple

Dumb

and

Dumber

Ocean’s

11

Sense and

Sensibility

(c) Alexander Ihler

Types of prediction problems
• Supervised learning

• Unsupervised learning

• Semi-supervised learning

– Similar to supervised

– some data have unknown target values

• Ex: medical data

– Lots of patient data, few known outcomes

• Ex: image tagging

– Lots of images on Flickr, but only some of them tagged

(c) Alexander Ihler

Types of prediction problems
• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• “Indirect” feedback on quality

– No answers, just “better” or “worse”

– Feedback may be delayed

(c) Alexander Ihler

Logistics
• 11 weeks

– 10 weeks of instruction (04/03 – 06/07)

– Finals week (06/14 4-6pm)

– Lab Tu 7:00-7:50 SSL 270

• Course webpage for assignments & other info

• gradescope.com for homework submission & return

• Piazza for questions & discussions

– piazza.com/uci/spring2018/cs273p

Textbook
• No required textbook

– I’ll try to cover everything needed in lectures and notes

• Recommended reading for reference

– Duda, Hart, Stork, "Pattern Classification“

– Daume "A Course in Machine Learning“

– Hastie, Tibshirani, Friedman, "The Elements of
Statistical Learning“

– Murphy "Machine Learning: A Probabilistic
Perspective“

– Bishop "Pattern Recognition and Machine Learning“

– Sutton "Reinforcement Learning"

Logistics
• Grading (may be subject to change)

– 20% homework (5+? >5: drop 1)

– 2 projects 20% each

– 40% final

– Due 11:59pm listed day, myEEE

– Late homework:
• 10% off per day

• No credit after solutions posted: turn in what you have

• Collaboration
– Study groups, discussion, assistance encouraged

• Whiteboards, etc.

– Any submitted work must be your own
• Do your homework yourself

• Don’t exchange solutions or HW code

Projects
• 2 projects:

– Regression (written report due about week 8/9)

– Classification (written report due week 11)

• Teams of 3 students

• Will use Kaggle

• Bonus points for winners, but

– Project evaluated based on report

Scientific software
• Python

– Numpy, MatPlotLib, SciPy, SciKit …

• Matlab

– Octave (free)

• R

– Used mainly in statistics

• C++

– For performance, not prototyping

• And other, more specialized languages for modeling…

(c) Alexander Ihler

Lab/Discussion Section
• Tuesday, 7:00-7:50 pm SSL 270

– Discuss material

– Get help with Python

– Discuss projects

Implement own ML program?
• Do I write my own program?

– Good for understanding how algorithm works

– Practical difficulties

• Poor data?

• Code buggy?

• Algorithm not suitable?

• Adopt 3rd party library?
– Good for understanding how ML works

– Debugged, tested.

– Fast turnaround.

• Mission-critical deployed system
– Probably need to have own implementation

– Good performance; C++; customized to circumstances!

• AI as service

(c) Alexander Ihler

Data exploration
• Machine learning is a data science

– Look at the data; get a “feel” for what might work

• What types of data do we have?

– Binary values? (spam; gender; …)

– Categories? (home state; labels; …)

– Integer values? (1..5 stars; age brackets; …)

– (nearly) real values? (pixel intensity; prices; …)

• Are there missing data?

• “Shape” of the data? Outliers?

(c) Alexander Ihler

Representing data
• Example: Fisher’s “Iris” data

http://en.wikipedia.org/wiki/Iris_flower_data_set

• Three different types of iris
– “Class”, y

• Four “features”, x1,…,x4

– Length & width of

sepals & petals

• 150 examples (data points)

(c) Alexander Ihler

Representing the data
• Have m observations (data points)

• Each observation is a vector consisting of n features

• Often, represent this as a “data matrix”

import numpy as np # import numpy

iris = np.genfromtxt("data/iris.txt",delimiter=None)

X = iris[:,0:4] # load data and split into features, targets

Y = iris[:,4]

print X.shape # 150 data points; 4 features each

(150, 4)

Basic statistics
• Look at basic information about features

– Average value? (mean, median, etc.)

– “Spread”? (standard deviation, etc.)

– Maximum / Minimum values?

print np.mean(X, axis=0) # compute mean of each feature

[5.8433 3.0573 3.7580 1.1993]

print np.std(X, axis=0) #compute standard deviation of each feature

[0.8281 0.4359 1.7653 0.7622]

print np.max(X, axis=0) # largest value per feature

[7.9411 4.3632 6.8606 2.5236]

print np.min(X, axis=0) # smallest value per feature

[4.2985 1.9708 1.0331 0.0536]

Histograms
• Count the data falling in each of K bins

– “Summarize” data as a length-K vector of counts (& plot)

– Value of K determines “summarization”; depends on # of data

• K too big: every data point falls in its own bin; just “memorizes”

• K too small: all data in one or two bins; oversimplifies

% Histograms in MatPlotLib

import matplotlib.pyplot as plt

X1 = X[:,0] # extract first feature

Bins = np.linspace(4,8,17) # use explicit bin locations

plt.hist(X1, bins=Bins) # generate the plot

Scatterplots
• Illustrate the relationship between two features

% Plotting in MatPlotLib

plt.plot(X[:,0], X[:,1], ’b.’); % plot data points as blue dots

Scatterplots
• For more than two features we can use a pair plot:

Supervised learning and targets
• Supervised learning: predict target values

• For discrete targets, often visualize with color

plt.hist([X[Y==c,1] for c in np.unique(Y)] ,

bins=20, histtype='barstacked’)

ml.histy(X[:,1], Y, bins=20)

colors = ['b','g','r']

for c in np.unique(Y):

plt.plot(X[Y==c,0], X[Y==c,1], 'o',

color=colors[int(c)])

How does machine learning work?
• “Meta-programming”

– Predict – apply rules to examples

– Score – get feedback on performance

– Learn – change predictor to do better

Program (“Learner”)

Characterized by

some “parameters” µ

Procedure (using µ)

that outputs a prediction

Training data

(examples)

Features

Learning algorithm

Change µ

Improve performance

Feedback /

Target values
Score performance

(“cost function”)

“predict”

“train”

Supervised learning
• Notation

– Features x

– Targets y

– Predictions ŷ = f(x ; q)

– Parameters q

Program (“Learner”)

Characterized by

some “parameters” µ

Procedure (using µ)

that outputs a prediction

Training data

(examples)

Features

Learning algorithm

Change µ

Improve performance

Feedback /

Target values
Score performance

(“cost function”)

“predict”

“train”

Regression; Scatter plots

• Suggests a relationship between x and y

• Prediction: new x, what is y?

0 10 20
0

20

40

T
a
rg

e
t

 y

Feature x

x(new)

y(new) =?

(c) Alexander Ihler

Nearest neighbor regression

• Find training datum x(i) closest to x(new)

Predict y(i)

0 10 20
0

20

40

x(new)

y(new) =?

T
a
rg

e
t

 y

Feature x

(c) Alexander Ihler

Nearest neighbor regression

• Defines a function f(x) implicitly

• “Form” is piecewise constant

0 10 20
0

20

40

T
a
rg

e
t

 y

Feature x

“Predictor”:

Given new features:

Find nearest example

Return its value

(c) Alexander Ihler

Linear regression

• Define form of function f(x) explicitly

• Find a good f(x) within that family

0 10 20
0

20

40

T
a
rg

e
t

 y

Feature x

“Predictor”:

Evaluate line:

return r

(c) Alexander Ihler

Measuring error

0 20
0

Error or “residual”

Prediction

Observation

(c) Alexander Ihler

Regression vs. Classification

Regression

Features x

Real-valued target y

Predict continuous function ŷ(x)

y

x

Classification

Features x

Discrete class c

(usually 0/1 or +1/-1)

Predict discrete function ŷ(x)

y

x

x

“flatten”

(c) Alexander Ihler

Classification

X1 !

X
2

!

?

(c) Alexander Ihler

Classification

X1 !

X
2

!

?

All points where we decide 1

All points where we decide -1

Decision Boundary

(c) Alexander Ihler

Measuring error

X1 !

X
2

!

All points where we decide 1

All points where we decide -1

Decision Boundary

(c) Alexander Ihler

Feature spam keep

X=0 0.6 0.4

X=1 0.1 0.9

Feature spam keep

X=0 0.6 0.4

X=1 0.1 0.9

A simple, optimal classifier
• Classifier f(x ; µ)

– maps observations x to predicted target values

• Simple example
– Discrete feature x: f(x ; µ) is a contingency table

– Ex: spam filtering: observe just X1 = in contact list?

• Suppose we knew the true conditional probabilities:

• Best prediction is the most likely target!

(c) Alexander Ihler 42

“Bayes error rate”

Pr[X=0] * Pr[wrong | X=0] + Pr[X=1] * Pr[wrong | X=1]

= Pr[X=0] * (1- Pr[Y=S | X=0]) + Pr[X=1] * (1-Pr[Y=K | X=1])

Optimal least-squares regression
• Suppose that we know true p(X,Y)

• Prediction f(x): arbitrary function
– Focus on some specific x: f(x) = v

• Expected squared error loss is

• Minimum: take derivative & set to zero

Optimal estimate of Y: conditional expectation given X

Bayes classifier, estimated
• Now, let’s see what happens with “real” data

– Use empirically estimated probability model for p(x,y)

• Iris data set, first feature only (real-valued)

– We can estimate the probabilities (e.g., with a histogram)

2 Bins:
Predict “green” if X < 3.25, else “blue”

Model is “too simple”

20 Bins:
Predict by majority color in each bin

500 Bins:
Each bin has ~ 1 data point!
What about bins with 0 data?
Model is “too complex”

Inductive bias
• “Extend” observed data to unobserved examples

– “Interpolate” / “extrapolate”

• What kinds of functions to expect? Prefer these (“bias”)
– Usually, let data pull us away from assumptions only with evidence!

(c) Alexander Ihler

x

y

Overfitting and complexity

(c) Alexander Ihler

x

y

Overfitting and complexity

Simple model: Y= aX + b + e

(c) Alexander Ihler

x

y

Overfitting and complexity

Y = high-order polynomial in X

(complex model)

(c) Alexander Ihler

x

y

Overfitting and complexity

Simple model: Y= aX + b + e

(c) Alexander Ihler

Overfitting and complexity

x

y

(c) Alexander Ihler

How Overfitting affects Prediction

Predictive

Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range

for Model Complexity

OverfittingUnderfitting

(c) Alexander Ihler

Bias vs Variance

Bias vs Variance

Bias vs Variance

Bias vs Variance

Bias vs Variance

Learner Validation & Testing
• Training data

– Used to build your model(s)

• Validation data

– Used to assess, select among, or combine models

– Personal validation; leaderboard; …

• Test data

– Used to estimate “real world” performance

Summary
• What is machine learning?

– Types of machine learning

– How machine learning works

• Supervised learning

– Training data: features x, targets y

• Regression

– (x,y) scatterplots; predictor outputs f(x); optimal MSE predictor

• Classification

– (x,x) scatterplots

– Decision boundaries, colors & symbols; Bayes optimal classifier

• Complexity

– Training vs test error

– Under- & over-fitting

