Machine Learning and Data Mining

Introduction

Kalev Kask 273P Spring 2018

+

Artificial Intelligence (AI)

- Building "intelligent systems"
- Lots of parts to intelligent behavior

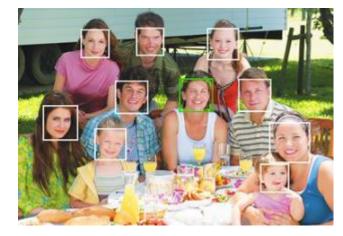
Darpa GC (Stanley)

RoboCup

Chess (Deep Blue v. Kasparov)

Machine learning (ML)

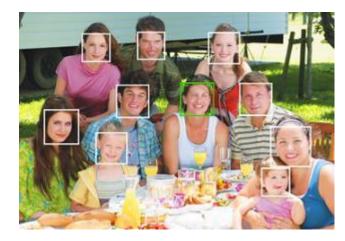
- One (important) part of AI
- Making predictions (or decisions)
- Getting better with experience (data)
- Problems whose solutions are "hard to describe"



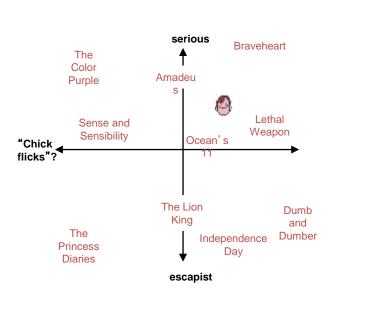
Areas of ML

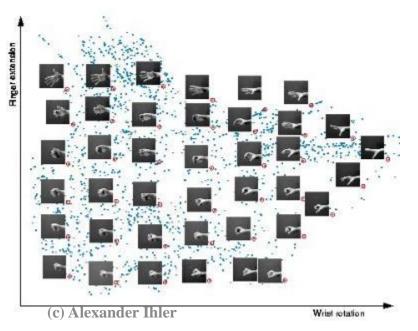
- Supervised learning
- Unsupervised learning
- Reinforcement learning

- Supervised learning
 - "Labeled" training data
 - Every example has a desired target value (a "best answer")
 - Reward prediction being close to target
 - Classification: a discrete-valued prediction (often: decision)
 - Regression: a continuous-valued prediction



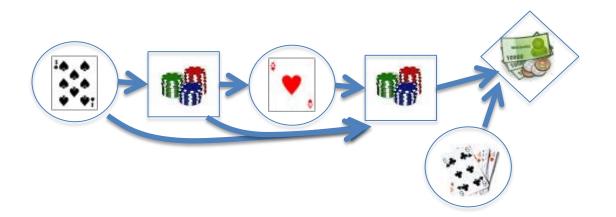
- Supervised learning
- Unsupervised learning
 - No known target values
 - No targets = nothing to predict?
 - Reward "patterns" or "explaining features"
 - Often, data mining





- Supervised learning
- Unsupervised learning
- Semi-supervised learning
 - Similar to supervised
 - some data have unknown target values
- Ex: medical data
 - Lots of patient data, few known outcomes
- Ex: image tagging
 - Lots of images on Flickr, but only some of them tagged

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- "Indirect" feedback on quality
 - No answers, just "better" or "worse"
 - Feedback may be delayed



Logistics

- 11 weeks
 - 10 weeks of instruction (04/03 06/07)
 - Finals week (06/14 4-6pm)
 - Lab Tu 7:00-7:50 SSL 270
- Course webpage for assignments & other info
- gradescope.com for homework submission & return
- Piazza for questions & discussions

-piazza.com/uci/spring2018/cs273p

Textbook

- No required textbook
 - I'll try to cover everything needed in lectures and notes
- Recommended reading for reference
 - Duda, Hart, Stork, "Pattern Classification"
 - Daume "A Course in Machine Learning"
 - Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning"
 - Murphy "Machine Learning: A Probabilistic Perspective"
 - Bishop "Pattern Recognition and Machine Learning"
 - Sutton "Reinforcement Learning"

Logistics

- Grading (may be subject to change)
 - 20% homework (5+? >5: drop 1)
 - 2 projects 20% each
 - 40% final
 - Due 11:59pm listed day, myEEE
 - Late homework:
 - 10% off per day
 - No credit after solutions posted: turn in what you have
- Collaboration
 - Study groups, discussion, assistance encouraged
 - Whiteboards, etc.
 - Any submitted work must be your own
 - Do your homework yourself
 - Don't exchange solutions or HW code

Projects

- 2 projects:
 - Regression (written report due about week 8/9)
 - Classification (written report due week 11)
- Teams of 3 students
- Will use Kaggle
- Bonus points for winners, but
 - Project evaluated based on report

Scientific software

- Python
 - Numpy, MatPlotLib, SciPy, SciKit …
- Matlab
 - Octave (free)
- R
 - Used mainly in statistics
- C++
 - For performance, not prototyping
- And other, more specialized languages for modeling...

Lab/Discussion Section

- Tuesday, 7:00-7:50 pm SSL 270
 - Discuss material
 - Get help with Python
 - Discuss projects

Implement own ML program?

- Do I write my own program?
 - Good for understanding how algorithm works
 - Practical difficulties
 - Poor data?
 - Code buggy?
 - Algorithm not suitable?
- Adopt 3rd party library?
 - Good for understanding how ML works
 - Debugged, tested.
 - Fast turnaround.
- Mission-critical deployed system
 - Probably need to have own implementation
 - Good performance; C++; customized to circumstances!
- Al as service

Data exploration

- Machine learning is a data science
 - Look at the data; get a "feel" for what might work
- What types of data do we have?
 - Binary values? (spam; gender; …)
 - Categories? (home state; labels; ...)
 - Integer values? (1..5 stars; age brackets; ...)
 - (nearly) real values? (pixel intensity; prices; ...)
- Are there missing data?
- "Shape" of the data? Outliers?

Representing data

- Example: Fisher's "Iris" data http://en.wikipedia.org/wiki/Iris_flower_data_set
- Three different types of iris
 "Class", y
- Four "features", X₁,...,X₄
 Length & width of

sepals & petals

150 examples (data points)

Representing the data

• Have m observations (data points)

 $\left\{x^{(1)}\ldots,x^{(m)}\right\}$

Each observation is a vector consisting of n features

$$x^{(j)} = [x_1^{(j)} x_2^{(j)} \dots x_n^{(j)}]$$

Often, represent this as a "data matrix"

iris = np.genfromtxt("data/iris.txt",delimiter=None)
X = iris[:,0:4] # load data and split into features, targets
Y = iris[:,4]
print X.shape # 150 data points; 4 features each
(150, 4)

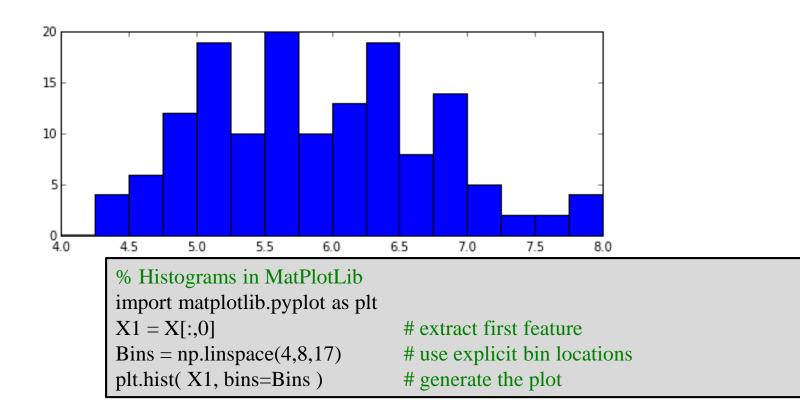
Basic statistics

- Look at basic information about features
 - Average value? (mean, median, etc.)
 - "Spread"? (standard deviation, etc.)
 - Maximum / Minimum values?

```
print np.mean(X, axis=0)# compute mean of each feature[5.8433 3.0573 3.7580 1.1993]print np.std(X, axis=0)# compute standard deviation of each feature[0.8281 0.4359 1.7653 0.7622]print np.max(X, axis=0)# largest value per feature[7.9411 4.3632 6.8606 2.5236]print np.min(X, axis=0)# smallest value per feature[4.2985 1.9708 1.0331 0.0536]
```

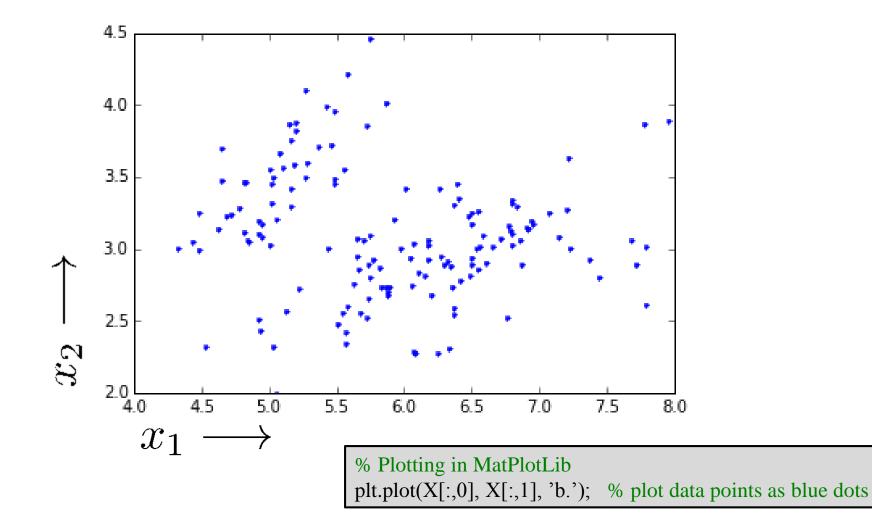
Histograms

- Count the data falling in each of K bins
 - "Summarize" data as a length-K vector of counts (& plot)
 - Value of K determines "summarization"; depends on # of data
 - K too big: every data point falls in its own bin; just "memorizes"
 - K too small: all data in one or two bins; oversimplifies



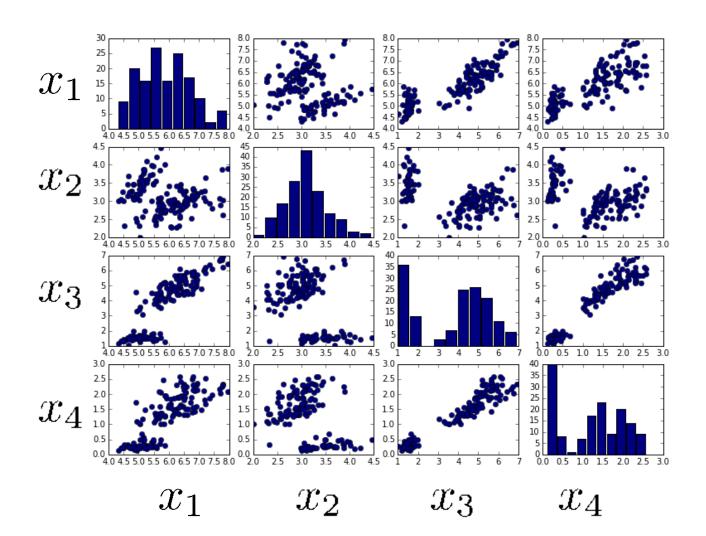
Scatterplots

Illustrate the relationship between two features



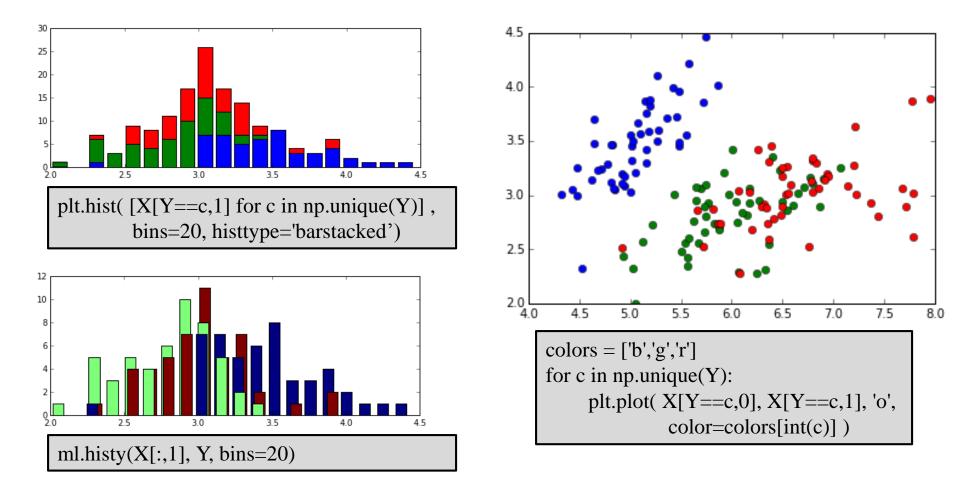
Scatterplots

• For more than two features we can use a pair plot:



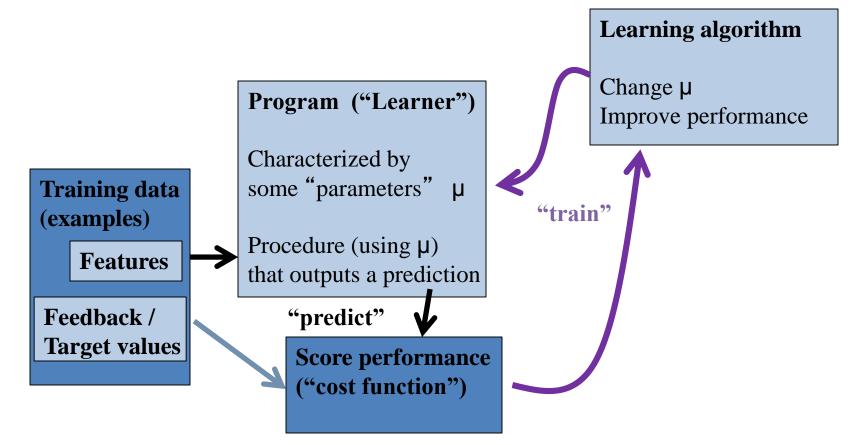
Supervised learning and targets

- Supervised learning: predict target values
- For discrete targets, often visualize with color



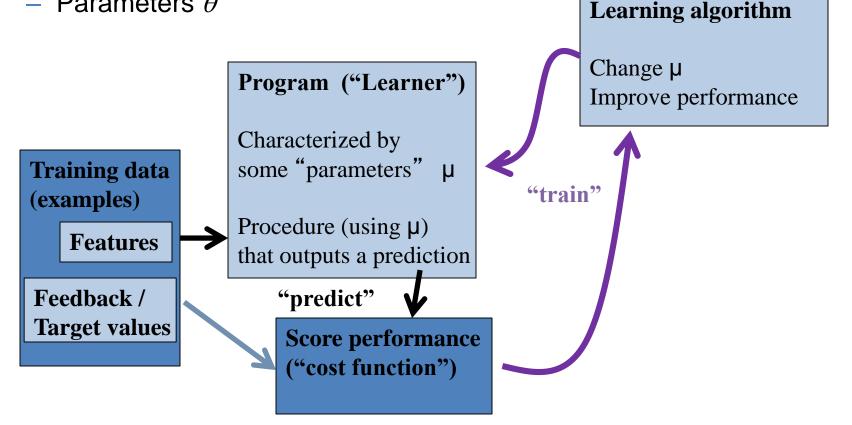
How does machine learning work?

- "Meta-programming"
 - Predict apply rules to examples
 - Score get feedback on performance
 - Learn change predictor to do better

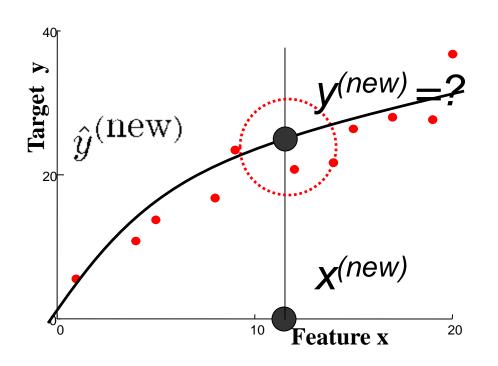


Supervised learning

- **Notation**
 - Features X
 - Targets V
 - Predictions $\hat{y} = f(x; \theta)$
 - Parameters θ

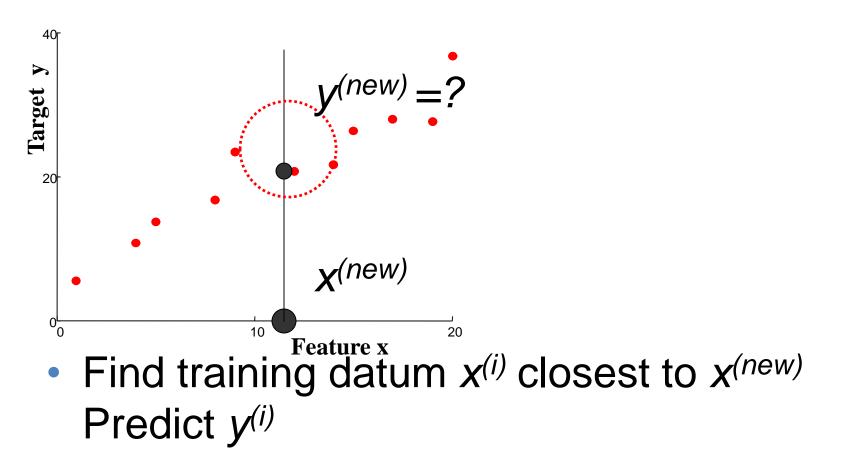


Regression; Scatter plots

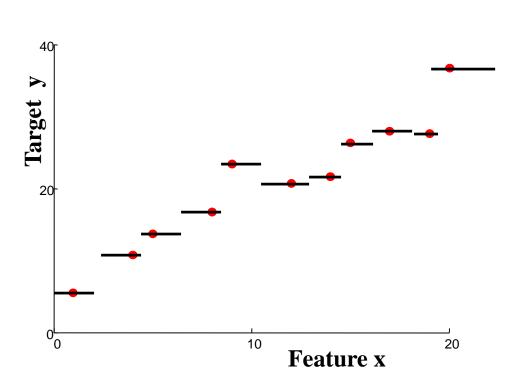


- Suggests a relationship between x and y
- *Prediction*: new x, what is y?

Nearest neighbor regression



Nearest neighbor regression

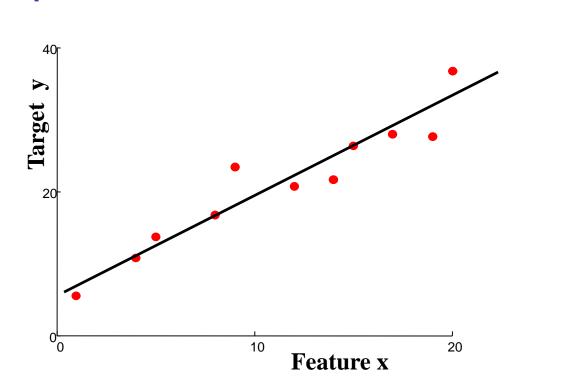


"Predictor":

Given new features: Find nearest example Return its value

- Defines a function f(x) implicitly
- "Form" is piecewise constant

Linear regression

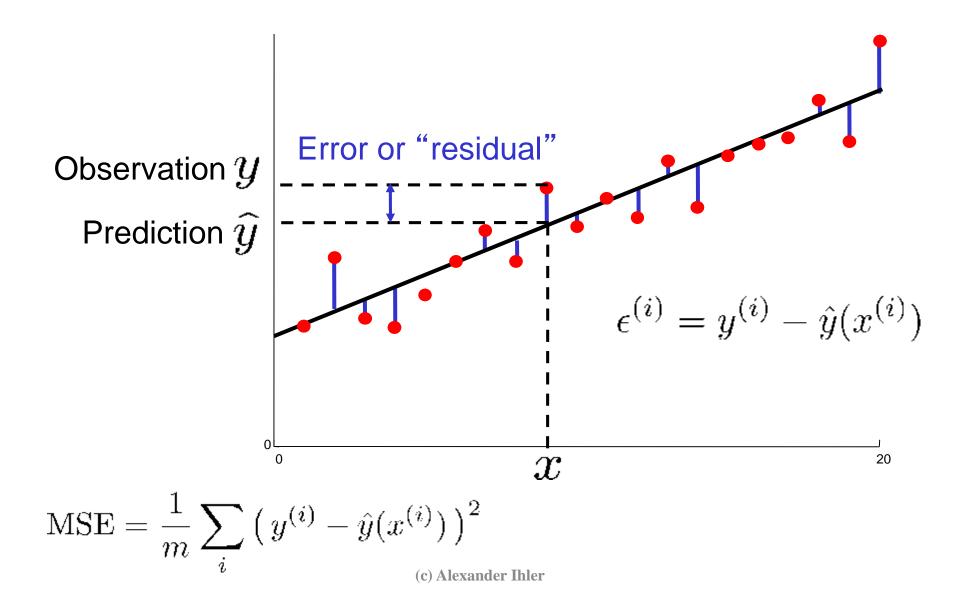


"Predictor": Evaluate line: $r = \theta_0 + \theta_1 x_1$

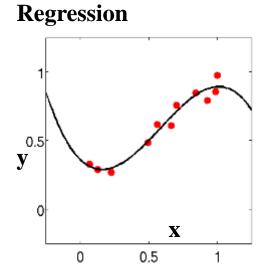
return r

- Define form of function f(x) explicitly
- Find a good f(x) within that family

Measuring error



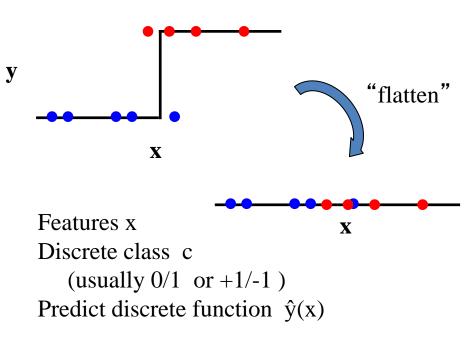
Regression vs. Classification



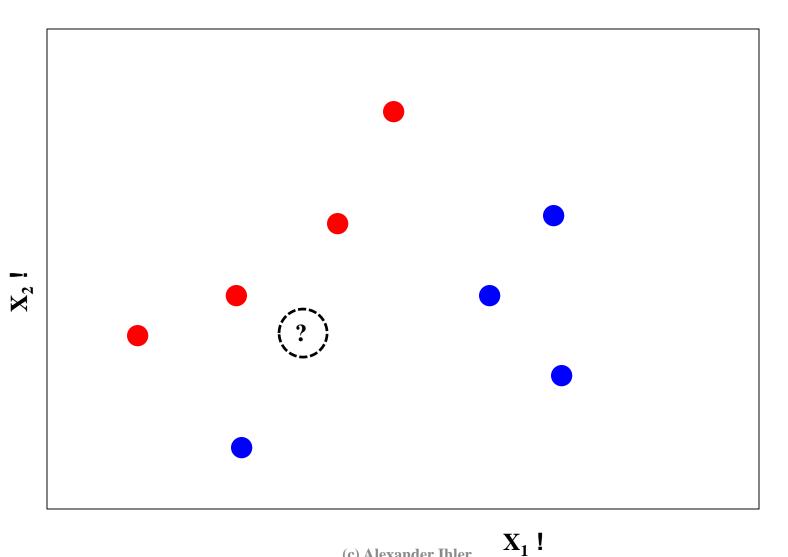
Features x Real-valued target y

Predict continuous function $\hat{y}(x)$

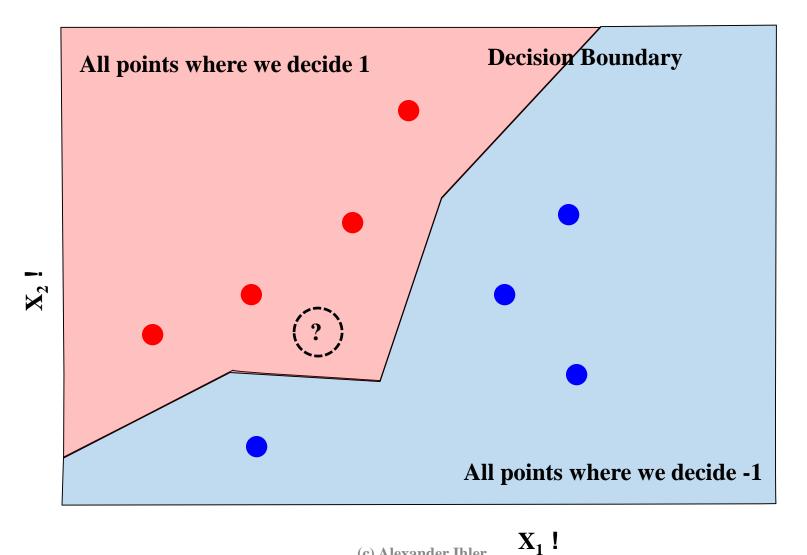
Classification



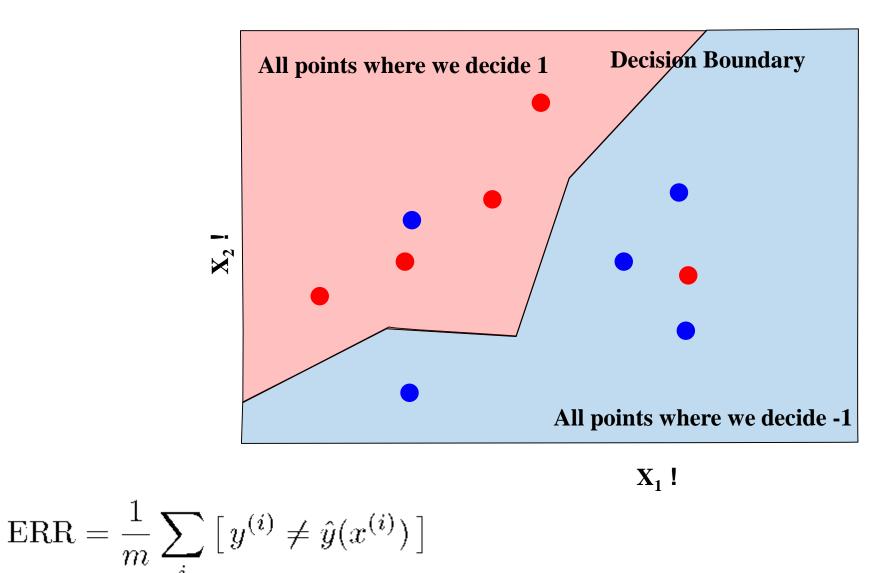
Classification



Classification



Measuring error



A simple, optimal classifier

- Classifier f(x ; µ)
 - maps observations x to predicted target values
- Simple example
 - Discrete feature x: $f(x; \mu)$ is a contingency table
 - Ex: spam filtering: observe just $X_1 = in$ contact list?
- Suppose we knew the true conditional probabilities:
- Best prediction is the most likely target!

Feature	spam	keep
X=0	0.6	0.4
X=1	0.1	0.9

"Bayes error rate"

- Pr[X=0] * Pr[wrong | X=0] + Pr[X=1] * Pr[wrong | X=1]
- = Pr[X=0] * (1- Pr[Y=S | X=0]) + Pr[X=1] * (1-Pr[Y=K | X=1])

Optimal least-squares regression

- Suppose that we know true p(X,Y)
- Prediction f(x): *arbitrary* function
 - Focus on some specific x: f(x) = v
- Expected squared error loss is

$$\mathbb{E}_{Y|X=x}\left[(Y-v)^2\right] = \int p(Y|X=x)(Y-v)^2 \, dY$$

• Minimum: take derivative & set to zero

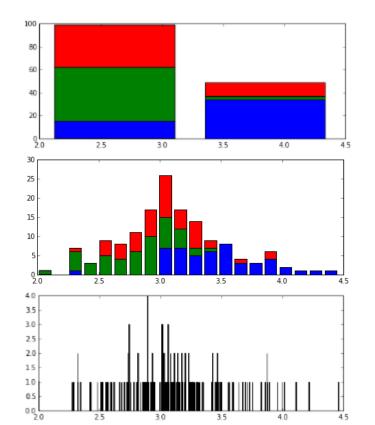
$$\frac{\partial}{\partial v} \int p(Y|X=x)(Y-v)^2 \, dY = \int p(Y|X=x)2(Y-v) = 0$$

$$\Rightarrow \qquad 2\int p(Y|X=x)Y = 2\Big(\int p(Y|X=x)\Big)v$$
$$\Rightarrow \qquad v = \int p(Y|X=x)Y = \mathbb{E}_{Y|X=x}[Y]$$

Optimal estimate of Y: conditional expectation given X

Bayes classifier, estimated

- Now, let's see what happens with "real" data
 - Use empirically estimated probability model for p(x,y)
- Iris data set, first feature only (real-valued)
 - We can estimate the probabilities (e.g., with a histogram)



2 Bins:

Predict "green" if X < 3.25, else "blue"

Model is "too simple"

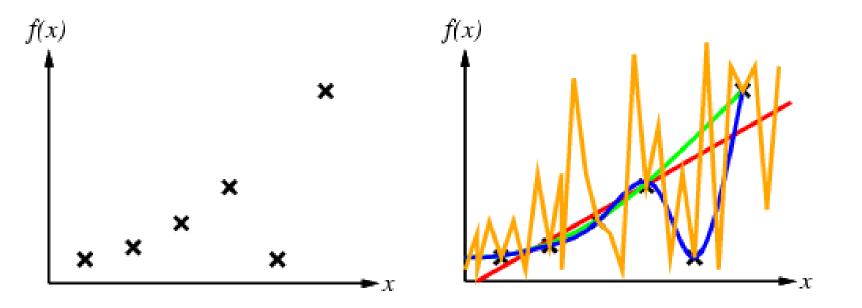
20 Bins:

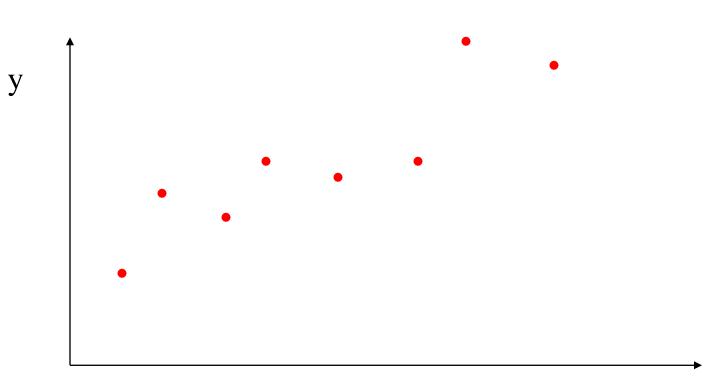
Predict by majority color in each bin

500 Bins: Each bin has ~ 1 data point! What about bins with 0 data? Model is "too complex"

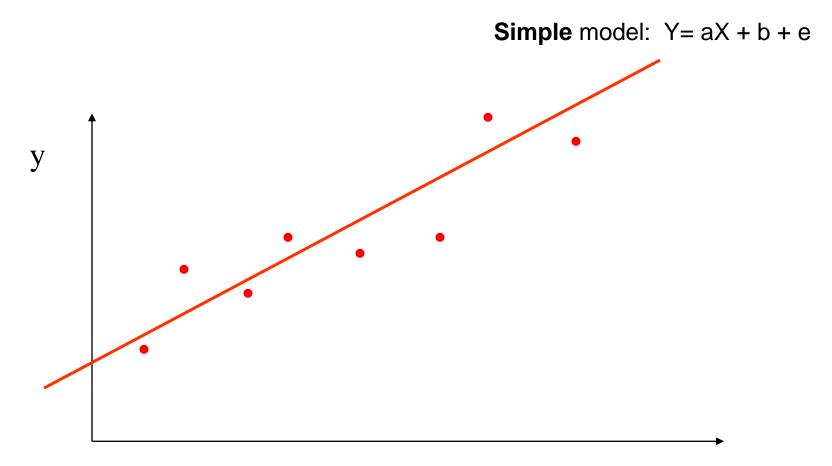
Inductive bias

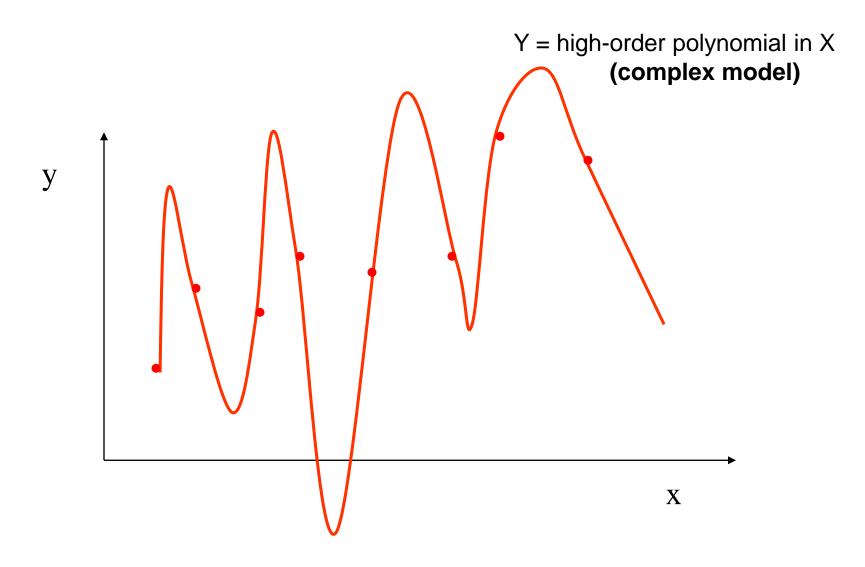
- "Extend" observed data to unobserved examples
 - "Interpolate" / "extrapolate"
- What kinds of functions to expect? Prefer these ("bias")
 - Usually, let data pull us away from assumptions only with evidence!



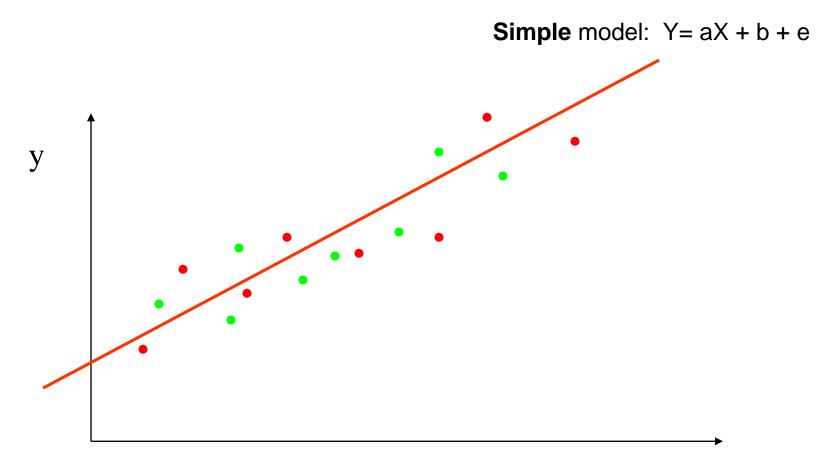


Х

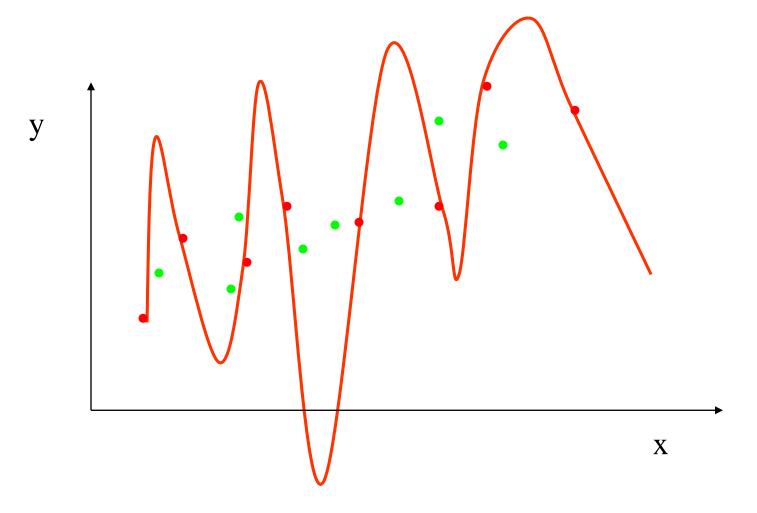




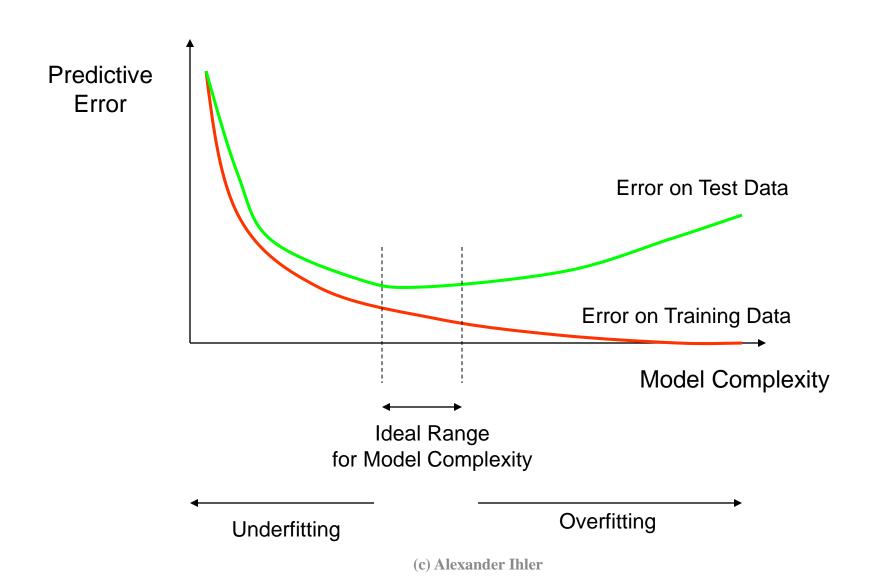
(c) Alexander Ihler



Χ



How Overfitting affects Prediction



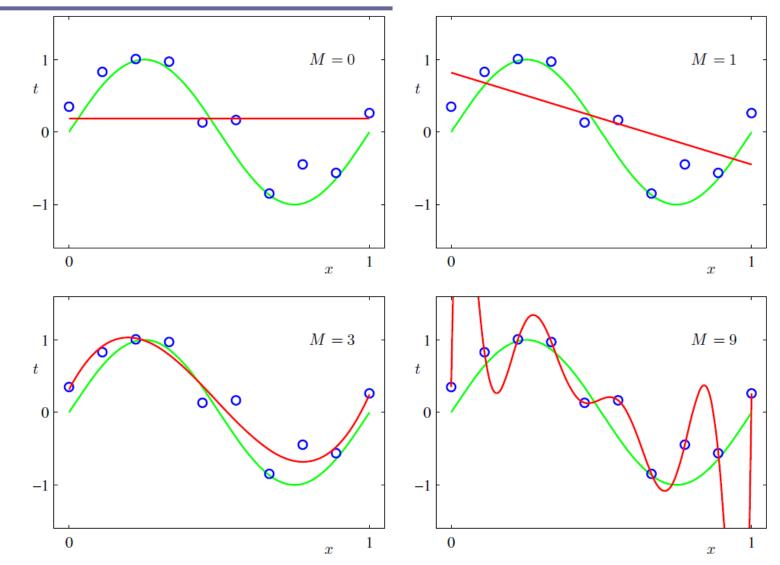
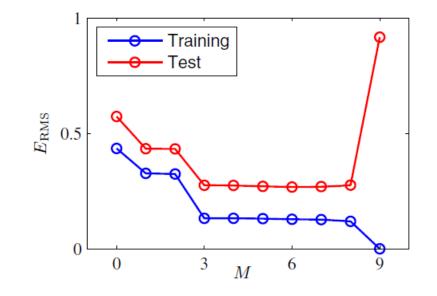


Figure 1.4 Plots of polynomials having various orders *M*, shown as red curves, fitted to the data set shown in Figure 1.2.



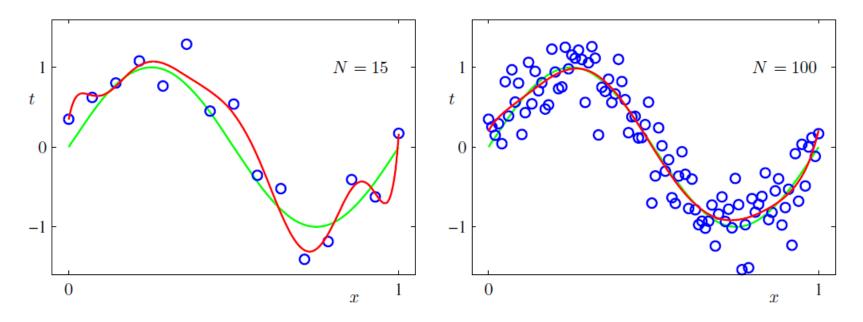


Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9 polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the size of the data set reduces the over-fitting problem.

	M = 0	M = 1	M = 6	M = 9		$\ln \lambda = -\infty$	$\ln\lambda=-18$	$\ln\lambda=0$
w_0^\star	0.19	0.82	0.31	0.35	w_0^\star	0.35	0.35	0.13
$w_1^{\omega_0}$	0.17	-1.27	7.99	232.37	w_1^{\star}	232.37	4.74	-0.05
		1.27	-25.43	-5321.83	w_2^{\star}	-5321.83	-0.77	-0.06
$w_2^\star w_3^\star$			17.37	48568.31	$w_3^{\tilde{\star}}$	48568.31	-31.97	-0.05
w_3			17.57	-231639.30	w_4^{\star}	-231639.30	-3.89	-0.03
$w_4^\star w_5^\star$				640042.26	w_5^{\dagger}	640042.26	55.28	-0.02
w_5				-1061800.52	w_6^{\star}	-1061800.52	41.32	-0.01
w_6^\star				1042400.18	w_7^{\star}	1042400.18	-45.95	-0.00
w_7^\star				-557682.99	w_8^{\star}	-557682.99	-91.53	0.00
w_8^\star				125201.43	w_9^{\star}	125201.43	72.68	0.01
w_9^{\star}				123201.43	9			
	t 		0	$\ln \lambda = -18$				

Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error function (1.4) for two values of the regularization parameter λ corresponding to $\ln \lambda = -18$ and $\ln \lambda = 0$. The case of no regularizer, i.e., $\lambda = 0$, corresponding to $\ln \lambda = -\infty$, is shown at the bottom right of Figure 1.4.

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$\mathrm{E}\left[\left(y-\hat{f}\left(x
ight)
ight)^{2}
ight]=\mathrm{Bias}\left[\hat{f}\left(x
ight)
ight]^{2}+\mathrm{Var}\left[\hat{f}\left(x
ight)
ight]+\sigma^{2}$$

Where:

$$\mathrm{Bias}\left[\hat{f}\left(x
ight)
ight]=\mathrm{E}\left[\hat{f}\left(x
ight)-f(x)
ight]$$

and

$$\mathrm{Var}\left[\hat{f}\left(x
ight)
ight]=\mathrm{E}[\hat{f}\left(x
ight)^{2}]-\mathrm{E}[\hat{f}\left(x
ight)]^{2}$$

The expectation ranges over different choices of the training set $x_1, \ldots, x_n, y_1, \ldots, y_n$, all sampled from the same joint distribution P(x, y). The three terms represent:

- the square of the *bias* of the learning method, which can be thought of as the error caused by the simplifying assumptions built into the method. E.g., when approximating a non-linear function f(x) using a learning method for linear models, there will be error in the estimates $\hat{f}(x)$ due to this assumption;
- the *variance* of the learning method, or, intuitively, how much the learning method $\hat{f}(x)$ will move around its mean;
- the irreducible error σ^2 . Since all three terms are non-negative, this forms a lower bound on the expected error on unseen samples.^{[4]:34}

Learner Validation & Testing

- Training data
 - Used to build your model(s)
- Validation data
 - Used to assess, select among, or combine models
 - Personal validation; leaderboard; …
- Test data
 - Used to estimate "real world" performance

#	∆1w	Team Name * in the money	Score 🔞	Entries	Last Submission U1
1	-	BrickMover 🗈 *	1.21251	40	Sat, 31 Aug 2013 23:
2	new	vsu *	1.21552	13	Sat, 31 Aug 2013 20:
3	↑2	Merlion	1.22724	29	Sat, 31 Aug 2013 23:
4	↓2	Sergey	1.22856	15	Sat, 31 Aug 2013 23:
5	new	liuyongqi	1.22980	13	Sat, 31 Aug 2013 13:

Summary

- What is machine learning?
 - Types of machine learning
 - How machine learning works
- Supervised learning
 - Training data: features x, targets y
- Regression
 - (x,y) scatterplots; predictor outputs f(x); optimal MSE predictor
- Classification
 - (x,x) scatterplots
 - Decision boundaries, colors & symbols; Bayes optimal classifier
- Complexity
 - Training vs test error
 - Under- & over-fitting