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Artificial Intelligence (AI)
• Building “intelligent systems”

• Lots of parts to intelligent behavior

RoboCup

Darpa GC  (Stanley)

Chess (Deep Blue v. Kasparov)
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Machine learning (ML)
• One (important) part of AI

• Making predictions (or decisions)

• Getting better with experience (data)

• Problems whose solutions are “hard to describe”

(c) Alexander Ihler



Areas of ML
• Supervised learning

• Unsupervised learning

• Reinforcement learning



Types of prediction problems
• Supervised learning

– “Labeled” training data

– Every example has a desired target value  (a “best answer”)

– Reward prediction being close to target

– Classification: a discrete-valued prediction  (often: decision)

– Regression: a continuous-valued prediction
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Types of prediction problems
• Supervised learning

• Unsupervised learning

– No known target values

– No targets = nothing to predict?

– Reward “patterns” or “explaining features”

– Often, data mining
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Types of prediction problems
• Supervised learning

• Unsupervised learning

• Semi-supervised learning

– Similar to supervised

– some data have unknown target values

• Ex: medical data

– Lots of patient data, few known outcomes

• Ex: image tagging

– Lots of images on Flickr, but only some of them tagged
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Types of prediction problems
• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• “Indirect” feedback on quality

– No answers, just “better” or “worse”

– Feedback may be delayed
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Logistics
• 11 weeks

– 10 weeks of instruction (04/03 – 06/07)

– Finals week (06/14 4-6pm)

– Lab Tu 7:00-7:50 SSL 270

• Course webpage for assignments & other info

• gradescope.com for homework submission & return

• Piazza for questions & discussions

– piazza.com/uci/spring2018/cs273p



Textbook
• No required textbook

– I’ll try to cover everything needed in lectures and notes

• Recommended reading for reference

– Duda, Hart, Stork, "Pattern Classification“

– Daume "A Course in Machine Learning“

– Hastie, Tibshirani, Friedman, "The Elements of 
Statistical Learning“

– Murphy "Machine Learning: A Probabilistic 
Perspective“

– Bishop "Pattern Recognition and Machine Learning“

– Sutton "Reinforcement Learning"



Logistics
• Grading (may be subject to change)

– 20% homework (5+?   >5: drop 1)

– 2 projects 20% each

– 40% final

– Due 11:59pm listed day, myEEE

– Late homework:  
• 10% off per day

• No credit after solutions posted: turn in what you have

• Collaboration
– Study groups, discussion, assistance encouraged

• Whiteboards, etc.

– Any submitted work must be your own
• Do your homework yourself

• Don’t exchange solutions or HW code



Projects
• 2 projects:

– Regression (written report due about week 8/9)

– Classification (written report due week 11)

• Teams of 3 students

• Will use Kaggle

• Bonus points for winners, but

– Project evaluated based on report



Scientific software
• Python

– Numpy, MatPlotLib, SciPy, SciKit …

• Matlab

– Octave (free)

• R

– Used mainly in statistics

• C++

– For performance, not prototyping

• And other, more specialized languages for modeling…
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Lab/Discussion Section
• Tuesday, 7:00-7:50 pm SSL 270

– Discuss material

– Get help with Python

– Discuss projects



Implement own ML program?
• Do I write my own program?

– Good for understanding how algorithm works

– Practical difficulties

• Poor data?

• Code buggy?

• Algorithm not suitable?

• Adopt 3rd party library?
– Good for understanding how ML works

– Debugged, tested. 

– Fast turnaround.

• Mission-critical deployed system
– Probably need to have own implementation

– Good performance; C++; customized to circumstances!

• AI as service
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Data exploration
• Machine learning is a data science

– Look at the data; get a “feel” for what might work

• What types of data do we have?

– Binary values?  (spam; gender; …)

– Categories?  (home state; labels; …) 

– Integer values?  (1..5 stars; age brackets; …)

– (nearly) real values? (pixel intensity; prices; …)

• Are there missing data?

• “Shape” of the data?  Outliers?
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Representing data 
• Example: Fisher’s “Iris” data

http://en.wikipedia.org/wiki/Iris_flower_data_set

• Three different types of iris
– “Class”, y

• Four “features”, x1,…,x4

– Length & width of

sepals & petals

• 150 examples (data points)
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Representing the data
• Have m observations (data points)

• Each observation is a vector consisting of n features

• Often, represent this as a “data matrix”

import numpy as np # import numpy

iris = np.genfromtxt("data/iris.txt",delimiter=None)

X = iris[:,0:4] # load data and split into features, targets

Y = iris[:,4]

print X.shape # 150 data points; 4 features each

(150, 4)



Basic statistics
• Look at basic information about features

– Average value?  (mean, median, etc.)

– “Spread”?   (standard deviation, etc.)

– Maximum / Minimum values?

print np.mean(X, axis=0) # compute mean of each feature

[ 5.8433    3.0573    3.7580    1.1993 ]

print np.std(X, axis=0) #compute standard deviation of each feature

[ 0.8281    0.4359    1.7653    0.7622 ]

print np.max(X, axis=0)           # largest value per feature

[  7.9411    4.3632    6.8606    2.5236 ]

print np.min(X, axis=0)           # smallest value per feature

[  4.2985    1.9708    1.0331    0.0536  ]



Histograms
• Count the data falling in each of K bins

– “Summarize” data as a length-K vector of counts (& plot)

– Value of K determines “summarization”; depends on # of data

• K too big: every data point falls in its own bin; just “memorizes”

• K too small: all data in one or two bins; oversimplifies

% Histograms in MatPlotLib

import matplotlib.pyplot as plt

X1 = X[:,0] # extract first feature 

Bins = np.linspace(4,8,17) # use explicit bin locations

plt.hist( X1, bins=Bins ) # generate the plot



Scatterplots
• Illustrate the relationship between two features

% Plotting in MatPlotLib

plt.plot(X[:,0], X[:,1], ’b.’);   % plot data points as blue dots



Scatterplots
• For more than two features we can use a pair plot:



Supervised learning and targets
• Supervised learning: predict target values

• For discrete targets, often visualize with color

plt.hist( [X[Y==c,1] for c in np.unique(Y)] , 

bins=20, histtype='barstacked’)

ml.histy(X[:,1], Y, bins=20)

colors = ['b','g','r']

for c in np.unique(Y):

plt.plot( X[Y==c,0], X[Y==c,1], 'o',

color=colors[int(c)] )



How does machine learning work?
• “Meta-programming”

– Predict – apply rules to examples

– Score – get feedback on performance

– Learn – change predictor to do better

Program  (“Learner”)

Characterized by 

some “parameters” µ

Procedure (using µ) 

that outputs a prediction

Training data 

(examples)

Features

Learning algorithm

Change µ

Improve performance

Feedback / 

Target values
Score performance

(“cost function”)

“predict”

“train”



Supervised learning
• Notation

– Features      x

– Targets        y

– Predictions  ŷ = f(x ; q)

– Parameters q

Program  (“Learner”)

Characterized by 

some “parameters” µ

Procedure (using µ) 

that outputs a prediction

Training data 

(examples)

Features

Learning algorithm

Change µ

Improve performance

Feedback / 

Target values
Score performance

(“cost function”)

“predict”

“train”



Regression; Scatter plots

• Suggests a relationship between x and y

• Prediction: new x, what is y?
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Nearest neighbor regression

• Find training datum x(i) closest to x(new) 

Predict y(i)
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Nearest neighbor regression

• Defines a function  f(x)  implicitly

• “Form” is piecewise constant
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Linear regression

• Define form of function f(x) explicitly

• Find a good f(x) within that family
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Measuring error
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Regression vs. Classification

Regression

Features x

Real-valued target  y

Predict continuous function  ŷ(x)

y

x

Classification

Features x

Discrete class  c

(usually 0/1  or +1/-1 )

Predict discrete function  ŷ(x)

y

x

x

“flatten”
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Classification
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Classification
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Measuring error
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Feature spam keep

X=0 0.6 0.4

X=1 0.1 0.9

Feature spam keep

X=0 0.6 0.4

X=1 0.1 0.9

A simple, optimal classifier
• Classifier f(x ; µ) 

– maps observations x to predicted target values

• Simple example
– Discrete feature x: f(x ; µ) is a contingency table

– Ex: spam filtering:  observe just X1 = in contact list?

• Suppose we knew the true conditional probabilities:

• Best prediction is the most likely target!

(c) Alexander Ihler 42

“Bayes error rate”

Pr[X=0] *  Pr[wrong | X=0]    +  Pr[X=1] *  Pr[ wrong | X=1] 

= Pr[X=0] * (1- Pr[Y=S | X=0]) +  Pr[X=1] * (1-Pr[Y=K | X=1])



Optimal least-squares regression
• Suppose that we know true p(X,Y)

• Prediction f(x):   arbitrary function
– Focus on some specific x:  f(x) = v

• Expected squared error loss is

• Minimum: take derivative & set to zero

Optimal estimate of Y: conditional expectation given X



Bayes classifier, estimated
• Now, let’s see what happens with “real” data

– Use empirically estimated probability model for p(x,y)

• Iris data set, first feature only (real-valued)

– We can estimate the probabilities (e.g., with a histogram)

2 Bins:
Predict “green” if X < 3.25, else “blue”

Model is “too simple”

20 Bins:
Predict by majority color in each bin

500 Bins:
Each bin has ~ 1 data point!
What about bins with 0 data?
Model is “too complex”



Inductive bias
• “Extend” observed data to unobserved examples

– “Interpolate” / “extrapolate”

• What kinds of functions to expect?  Prefer these (“bias”)
– Usually, let data pull us away from assumptions only with evidence!
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Overfitting and complexity

Simple model:  Y= aX + b + e
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Overfitting and complexity

Y = high-order polynomial in X

(complex model)
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Overfitting and complexity

Simple model:  Y= aX + b + e
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Overfitting and complexity
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How Overfitting affects Prediction

Predictive

Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range

for Model Complexity

OverfittingUnderfitting
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Bias vs Variance



Bias vs Variance



Bias vs Variance



Bias vs Variance



Bias vs Variance



Learner Validation & Testing
• Training data

– Used to build your model(s)

• Validation data

– Used to assess, select among, or combine models

– Personal validation; leaderboard; …

• Test data

– Used to estimate “real world” performance



Summary
• What is machine learning?

– Types of machine learning

– How machine learning works

• Supervised learning

– Training data: features x, targets y

• Regression

– (x,y) scatterplots; predictor outputs f(x); optimal MSE predictor

• Classification

– (x,x) scatterplots

– Decision boundaries, colors & symbols; Bayes optimal classifier

• Complexity

– Training vs test error

– Under- & over-fitting


